Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38656719

RESUMO

The utilization of desulfurized building gypsum as raw material for gypsum-based self-leveling mortar (GSL) is limited by its low strength and poor water resistance. The objective of this study is to enhance comprehensive properties of GSL and prepare qualified desulfurized building gypsum-based self-leveling mortar that can be effectively applied in practical engineering projects. The influence of cement on water consumption rate of initial fluidity (W/M ratio), fluidity, setting time, mechanical strength, and water resistance of GSL were evaluated. Additionally, rheological parameter, heat of hydration, crystal morphology, and pore structure were also analyzed. Cement significantly improved the fluidity of slurry. Moreover, the compressive strength and softening coefficient of GSL reached 20.6 MPa and 0.56 at 10% cement, respectively. Furthermore, cement reduced the 30-min-fluidity loss and improved fludity by reducing the yield stress and increasing the plastic viscosity of screed. The transformation of hydration kinetics of GSL could be due to Ca2+ and OH- released by cement, thus resulting in the shortening of initial setting time and the prolongation of the interval between initial and final setting time. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) showed that CSH gel and AFt crystal would generate on the surface of CaSO4·2H2O crystal, making the structure more compact. Mercury intrusion porosimetry (MIP) indicated that cement greatly reduced the porosity through the water reduction effect in the early stage and continuous hydration in the later stage. The continuous hydration of cement also increased the shrinkage rate. This work was expected to provide reference for promoting the application of desulfurized building gypsum as the high value-added screed.

2.
Materials (Basel) ; 15(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35408012

RESUMO

Phospho-gypsum is an industrial solid waste discharged from the phosphate production process. The waste includes complex impurities such as phosphoric acid and its salts, fluoride, and organics. Usually, retarders are mixed in gypsum-based building materials to extend setting time. Although the effects of the impurities on hydration properties and the mechanical strength of calcined gypsum have been analyzed, the impact and mechanism of soluble phosphorus on the phospho-gypsum under retardation is yet to be defined. In this study, we employed thermogravimetry (TG), X-ray diffraction (XRD) and scanning electron microscopy (SEM) to evaluate the hydration kinetics, phase transformation, structure, and morphology of the calcined gypsum. The data showed that the retarder or soluble phosphorus prolonged the setting time. A single retarder considerably shortened the initial setting time from 95 min to 60 min, even at the lowest dosage of 0.1 wt.% soluble phosphorus. In addition, drying flexural and compressive strengths were markedly decreased. On the other hand, the induction period was advanced with extension of acceleration and deceleration stage. SEM results indicated that the crystal morphology of the gypsum changed from a long to short column or block. An EDS analysis showed that phosphates were concentrated on the surface of gypsum crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...